113 research outputs found

    Do research papers provide enough information on design and material used in Ankle Foot Orthoses (AFO) for children with cerebral palsy (CP)? : A systematic review.

    Get PDF
    Objectives The purpose of this article is to determine how many of the current peer-reviewed studies of ankle foot or-thoses (AFOs) on children with cerebral palsy (CP) have included adequate details of the design and material of the AFO, to enable the study to be reproduced and outcomes clearly understood. Methods A thorough search of studies published in English was conducted in March 2015, with no restriction on dates, within all major databases using relevant phrases. These searches were then supplemented by tracking all key references from the appropriate articles identified. Study selection The inclusion criteria were as follows: (1) population - children with CP; (2) intervention - AFOs; and (3) outcome measure. One reviewer extracted data regarding the characteristics of the included studies, with the extracted data checked for accuracy and completeness by a second reviewer. None of the studies reviewed gave adequate details of the AFOs. Only 3.6% (n = 2) of papers tested the stiffness. Many studies (54.5%) did not describe the material used nor the material thickness (72.7 %). None of them gave any clinical justification for the chosen design of AFO. Conclusions There is a clear paucity of detail regarding the design and material used in AFOs on studies involving children with CP. Such a lack of detail has the potential to affect the validity of the reported outcomes, the ability to reproduce the studies and may misinform clinical practice

    Do research papers provide enough information on design and material used in ankle foot orthoses for children with cerebral palsy? A systematic review

    Get PDF
    Objectives The purpose of this article is to determine how many of the current peer-reviewed studies of ankle foot or-thoses (AFOs) on children with cerebral palsy (CP) have included adequate details of the design and material of the AFO, to enable the study to be reproduced and outcomes clearly understood. Methods A thorough search of studies published in English was conducted in March 2015, with no restriction on dates, within all major databases using relevant phrases. These searches were then supplemented by tracking all key references from the appropriate articles identified. Study selection The inclusion criteria were as follows: (1) population - children with CP; (2) intervention - AFOs; and (3) outcome measure. One reviewer extracted data regarding the characteristics of the included studies, with the extracted data checked for accuracy and completeness by a second reviewer. None of the studies reviewed gave adequate details of the AFOs. Only 3.6% (n = 2) of papers tested the stiffness. Many studies (54.5%) did not describe the material used nor the material thickness (72.7 %). None of them gave any clinical justification for the chosen design of AFO. Conclusions There is a clear paucity of detail regarding the design and material used in AFOs on studies involving children with CP. Such a lack of detail has the potential to affect the validity of the reported outcomes, the ability to reproduce the studies and may misinform clinical practice

    Ankle-Foot Orthosis Stiffness: Biomechanical Effects, Measurement and Emulation

    Full text link
    Ankle-foot orthoses (AFOs) are braces worn by individuals with gait impairments to provide support about the ankle. AFOs come in a variety of designs for clinicians to choose from. However, as the effects of different design parameters on AFO properties and AFO users have not been adequately quantified, it is not clear which design choices are most likely to improve patient outcomes. Recent advances in manufacturing have further expanded the design space, adding urgency and complexity to the challenge of selecting optimal designs. A key AFO property affected by design decisions is sagittal-plane rotational stiffness. To evaluate the effectiveness of different AFO designs, we need: 1) a better understanding of the biomechanical effects of AFO stiffness and 2) more precise and repeatable stiffness measurement methods. This dissertation addresses these needs by accomplishing four aims. First, we conducted a systematic literature review on the influence of AFO stiffness on gait biomechanics. We found that ankle and knee kinematics are affected by increasing stiffness, with minimal effects on hip kinematics and kinetics. However, the lack of effective stiffness measurement techniques made it difficult to determine which specific values or ranges of stiffness influence biomechanics. Therefore, in Aim2, we developed an AFO stiffness measurement apparatus (SMApp). The SMApp is an automated device that non-destructively flexes an AFO to acquire operator- and trial-independent measurements of its torque-angle dynamics. The SMApp was designed to test a variety of AFO types and sizes across a wide range of flexion angles and speeds exceeding current alternatives. Common models of AFO torque-angle dynamics in literature have simplified the relationship to a linear fit whose slope represents stiffness. This linear approximation ignores damping parameters. However, as previous studies were unable to precisely control AFO flexion speed, the presence of speed effects has not been adequately investigated. Thus, in Aim3, we used the SMApp to test whether AFOs exhibit viscoelastic behaviors over the range of speeds typically achieved during walking. This study revealed small but statistically significant effects of flexion speed on AFO stiffness for samples of both traditional AFOs and novel 3-D printed AFOs, suggesting that more complex models that include damping parameters could be more suitable for modeling AFO dynamics. Finally, in Aim 4, we investigated the use of an active exoskeleton, that can haptically-emulate different AFOs, as a potential test bed for studying the effects of AFO parameters on human movement. Prior work has used emulation for rapid prototyping of candidate assistive devices. While emulators can mimic a physical device's torque-angle profile, the physical and emulated devices may have other differences that influence user biomechanics. Current studies have not investigated these differences, which limits translation of findings from emulated to physical devices. To evaluate the efficacy of AFO emulation as a research tool, we conducted a single-subject pilot study with a custom-built AFO emulator device. We compared user kinematics while walking with a physical AFO against those with an emulated AFO and found they elicited similar ankle trajectories. This dissertation resulted in the successful development and evaluation of a framework consisting of two test beds, one to assess AFO mechanical properties and another to assess the effects of these properties on the AFO user. These tools enable innovations in AFO design that can translate to measurable improvements in patient outcomes.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163219/1/deema_1.pd

    Design and Implementation of Automated Ankle Foot Orthosis for Foot Drop Patients Using Gait Cycle EMG Analysis

    Get PDF
    Foot drop is known as gait abnormality in which the dropping of the forefoot happens due to the weakness of Tibialis Anterior Muscle for the damage of the common fibular nerve in the anterior portion of the lower leg. In this research, those patients are considered who have foot drop for Guillain–Barré syndrome (GBS). GBS is a peripheral nerve disorder for which bilateral foot drop happens to the patients. So, the aim of this research is to develop an automated Ankle Foot Orthosis (AFO) which will aid the GBS patients in their gait cycle while walking. For the development of this AFO, an EMG analysis has been conducted on both normal people (20 persons, Male 20-45 years) and GBS patients (10 patients, Male 20-45 years) and compared to find out the deviation of the patient’s one from the normal people. The findings of the EMG study show that the stance phase of the gait cycle is not affected by the GBS as correlation coefficient values are in between 0.95 to 1 where the swing phase very much deviates from the normal pattern as the coefficient values are in between 0.6 to 0.7 as well as short swing phase and no heel strike during walking. Considering these, automated AFO has been developed and implemented to test the feasibility and effectiveness on patients. The experimental results show that the effect of GBS on swing phase can be lessened as the value of correlation coefficient increases to 0.85 to 0.9 with long swing phase and proper heel strike on terminal swing phase

    The effects of biomechanically optimised ankle-foot orthoses-footwear combinations on the gait of children with cerebral palsy

    Get PDF
    The purpose of this study was to investigate the effects of the biomechanical optimisation of ankle-foot orthoses and footwear combinations (AFO-FCs) on the gait and energy expenditure of children with cerebral palsy (CP). The child's perception and compliance of wearing AFO-FCs were also investigated. Additional aims were to examine common clinical practice regarding AFO-FC tuning in the UK and to study the validity of using the static shank to vertical angle (SVA) to measure the dynamic SVA during gait. The study included five children with CP. Outcome measurements included sagittal plane kinematics and kinetics derived using 3D motion analysis, physical examination, heart rate (HR), energy expenditure, speed, distance, energy expenditure index (EEI), static SVA and dynamic SVA and an after study questionnaire. When studying children with CP, beneficial effects of biomechanically optimised AFO-FCs on gait parameters were evident; the results identified improvements to knee, hip and pelvic kinematics, particularly in cases where the principal gait deviation was hyperextension of the knee in stance. There were also beneficial effects on energy expenditure with the study highlighting a reduction in energy expenditure, and an increase in self-selected speed and distance covered, when walking in a biomechanically optimised AFO-FC compared to a non-tuned AFO-FC. The study demonstrated validity in using the static measurement of the SVA to estimate the dynamic SVA during temporal mid-stance (TMST). The importance of cosmesis and social inclusion was also highlighted as being important for disabled children who are asked to wear adapted footwear and AFOs. However, the results of this study indicated that when there is an improvement in physical function and activities of daily living, children will choose to comply with what they perceive to be uncosmetic orthoses. It was concluded that biomechanically optimised AFO-FCs have the potential to improve the kinematics and kinetics of gait, energy expenditure, speed and distance covered for children with CP, and that tuning the AFO-FC should be mandatory

    Kinetic relationships between ankle plantar flexor and hip flexor power during gait in mildly affected adults with spastic hemiplegic and diplegic cerebral palsy - A case series study based on a ballistic strength training rehabilitation program

    Get PDF
    Postponed access: the file will be accessible after 2021-05-15Background: In normal gait, the ankle plantar flexors provide most propulsive energy during push-off, with smaller contribution of hip flexors. However, the interplay between these two joints remains unclear in spastic cerebral palsy. The objective of this study was to evaluate the kinetic relationship between the ankle plantar flexor and hip flexor power in late stance of gait (A2/H3) in mildly affected adults with spastic cerebral palsy. By implementing a ballistic strength training program, it was hypothesized that these exercises would exaggerate ankle plantar flexor power so the need for hip flexor power compensation would decrease, and thereby result in an increased A2/H3 ratio. Method: Ten adults with spastic hemiplegic and diplegic cerebral palsy, Gross Motor Function Classification System I-II, was recruited to attend an eight week ballistic strength training program mainly prescribed to most paretic limb. Three-dimensional gait analysis with a force plate was used to investigate the impact on ankle and hip power generation in push-off before, during and after intervention. At least three gait trials at self-selected speed was analyzed for each limb to calculate peak ankle and hip flexor power in the sagittal plane and relationship between them (A2/H3 ratio). Results: 7 participants completed the study protocol. 6 out of these 7 participants increased A2/H3 ratio on the most paretic limb, while 5 increased on uninvolved limb. As expected, the change was more evident on the most paretic limb compared to the uninvolved limb. Conclusion: Findings from this study provide a better understanding of the interplay between power patterns in the ankle and hip joint in spastic cerebral palsy with a possible implication to clinical practice. However, the results cannot direct any casual relationships between change in A2/H3 ratio and ballistic strength training. Until evidence is found, we assume that ballistic strength training is feasible to alter A2/H3 ratio in adults with spastic cerebral palsy, yet further analytic investigation is needed.MAMD-HELSEFYST39

    Biomechanical study of rigid ankle-foot orthoses in the treatment of stroke patients

    Get PDF
    Error on title page, date of award is 2021.Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed for stroke patients who exhibit equinovarus deformity as an orthotic intervention. The main purpose of prescribing a rigid AFO is to provide appropriate control of unwanted ankle and foot motions in any plane. To achieve the optimal effects of the AFO, appropriate stiffness and alignment optimisation (tuning) should be considered. The AFO provides moments (referred to as the orthotic moments) to control ankle motion. Orthotic moments are different from the moments generated by ground reaction forces, the later are known as total ankle moments. Reviewing the literature showed limited research in this area. The aims of this study are to investigate the biomechanical effects of using rigid AFO (before and after tuning) and to investigate the orthotic moment during walking in stroke patients. Gait data were collected from six stroke participants (2 females, 4 males) and six healthy participants (3 females, 3 males) using a Motekforce Link dual belt instrumented treadmill and a Vicon 3-dimensional motion analysis system. Each participant was fitted with a custom made rigid AFO instrumented using four strain gauges. Walking at a self-selected speed was investigated while wearing: (1) Standard shoes only (2) Rigid AFO with standard shoes (3) Rigid Tuned-AFO with standard shoes. Lower limb temporal-spatial, kinetic and kinematic parameters, and electromyographic activity (Delsys TrignoTM) of the knee muscles were compared among the test conditions. The orthotic moments were also quantified using the strain gauges data combined with gait analysis. Repeated measures ANOVA and Friedman’s ANOVA were used for statistical analysis. The rigid AFO showed immediate improvement in the temporal-spatial parameters and the kinematics and the kinetics of post stroke gait. Greater improvement in knee kinematics and kinetics was achieved when tuning the rigid AFO. The rigid AFO (before and after tuning) increased quadriceps muscle activity and reduced hamstring muscle activity compared to walking with standard shoes only. Tuning a rigid AFO further increased quadriceps muscle activity and reduced hamstring muscle activity compared to AFO before tuning. Strain gauges data combined with gait analysis can be used in evaluating the orthotic moment around the ankle in sagittal and frontal planes. Tuning a rigid AFO had no clear changes in the orthotic moment, and it did not alter the anatomical moments at the ankle joint in sagittal and at the subtalar joint in frontal plane.Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed for stroke patients who exhibit equinovarus deformity as an orthotic intervention. The main purpose of prescribing a rigid AFO is to provide appropriate control of unwanted ankle and foot motions in any plane. To achieve the optimal effects of the AFO, appropriate stiffness and alignment optimisation (tuning) should be considered. The AFO provides moments (referred to as the orthotic moments) to control ankle motion. Orthotic moments are different from the moments generated by ground reaction forces, the later are known as total ankle moments. Reviewing the literature showed limited research in this area. The aims of this study are to investigate the biomechanical effects of using rigid AFO (before and after tuning) and to investigate the orthotic moment during walking in stroke patients. Gait data were collected from six stroke participants (2 females, 4 males) and six healthy participants (3 females, 3 males) using a Motekforce Link dual belt instrumented treadmill and a Vicon 3-dimensional motion analysis system. Each participant was fitted with a custom made rigid AFO instrumented using four strain gauges. Walking at a self-selected speed was investigated while wearing: (1) Standard shoes only (2) Rigid AFO with standard shoes (3) Rigid Tuned-AFO with standard shoes. Lower limb temporal-spatial, kinetic and kinematic parameters, and electromyographic activity (Delsys TrignoTM) of the knee muscles were compared among the test conditions. The orthotic moments were also quantified using the strain gauges data combined with gait analysis. Repeated measures ANOVA and Friedman’s ANOVA were used for statistical analysis. The rigid AFO showed immediate improvement in the temporal-spatial parameters and the kinematics and the kinetics of post stroke gait. Greater improvement in knee kinematics and kinetics was achieved when tuning the rigid AFO. The rigid AFO (before and after tuning) increased quadriceps muscle activity and reduced hamstring muscle activity compared to walking with standard shoes only. Tuning a rigid AFO further increased quadriceps muscle activity and reduced hamstring muscle activity compared to AFO before tuning. Strain gauges data combined with gait analysis can be used in evaluating the orthotic moment around the ankle in sagittal and frontal planes. Tuning a rigid AFO had no clear changes in the orthotic moment, and it did not alter the anatomical moments at the ankle joint in sagittal and at the subtalar joint in frontal plane

    Orthopedic Surgery to Improve Gait in Cerebral Palsy

    Get PDF

    Down-Conditioning of Soleus Reflex Activity using Mechanical Stimuli and EMG Biofeedback

    Get PDF
    Spasticity is a common syndrome caused by various brain and neural injuries, which can severely impair walking ability and functional independence. To improve functional independence, conditioning protocols are available aimed at reducing spasticity by facilitating spinal neuroplasticity. This down-conditioning can be performed using different types of stimuli, electrical or mechanical, and reflex activity measures, EMG or impedance, used as biofeedback variable. Still, current results on effectiveness of these conditioning protocols are incomplete, making comparisons difficult. We aimed to show the within-session task- dependent and across-session long-term adaptation of a conditioning protocol based on mechanical stimuli and EMG biofeedback. However, in contrast to literature, preliminary results show that subjects were unable to successfully obtain task-dependent modulation of their soleus short-latency stretch reflex magnitude
    • …
    corecore